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Finding the Maximally Inscribed Rectangle In a
Ro bot's Workspace

Jonghyun Baek, Cornel-Constantin Iurascu, Frank Chongwoo Park"
School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Korea

In this paper we formulate an optimization based approach to determining the maximally

inscribed rectangle in a robot's workspace. The size and location of the maximally inscribed

rectangle is an effective index for evaluating the size and quality of a robot's workspace. Such

information is useful for, e. g., optimal worktable placement, and the placement of cooperating

robots. For general robot workspaces we show how the problem can be formulated as a

constrained nonlinear optimization problem possessing a special structure, to which standard

numerical algorithms can be applied. Key to the rapid convergence of these algorithms is the

choice of a starting point; in this paper we develop an efficient computational geometric

algorithm for rapidly obtaining an approximate solution suitable as an initial starting point. We

also develop an improved version of the algorithm of Haug et al. for calculating a robot's

workspace boundary.
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1. Introduction

A fundamental criterion to be considered when

designing a robot for general-purpose tasks is its

workspace. A robot's workspace is typically

defined as the set of all reachable configurations

of its end-effector. Under the usual practical

constraints such as limits on link lengths and

joint ranges, and assuming the robot is designed

for general tasks, one would like the robot

workspace not only to be as large as possible, but

topologically well-connected and homogeneous,

i. e., the workspace should be simply connected

with a minimal number of holes and voids, and

should extend uniformly in all directions.

Because of its fundamental nature, the problem

of robot workspace analysis has received signifi

cant attention in the literature. Of the works that
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focus on characterizing workspace quality, Gupta

(1986) examines the topological properties of the

workspace of serial robots, while Bajpai and Roth

(1986) do the same for a serial robot containing a

single closed loop. Particularly relevant to this

paper is the work of Haug et al. (1996), who

present an efficient numerical algorithm for

determining the boundary of a serial manipulator'

s workspace.

One means of simultaneously characterizing the

size and homogeneity (of the outer boundary and

not taking into account any unreachable end

effector points) of a robot's workspace is in terms

of the maximally inscribed rectangle. There are

several advantages to this characterization. First,

it is quite natural and practical to program a

robot for a given task in terms of a Cartesian

reference frame. For many robots often the physi

cal worktable itself is rectangular in shape.

Hence, by knowing the maximally inscribed rec

tangle in advance, one can optimally place the

robot relative to the worktable to ensure that all

points on the worktable are accessible by the

robot. The same is true for multiple cooperating

robots, where the workspace is the intersection of
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the workspaces of individual robots. Because the
workspace of a single robot typically has a com
plex shape, working in terms of maximally
inscribed rectangles considerably simplifies the
analysis for multiple robots. Finally, the
maximally inscribed rectangle is basic
preliminary step toward determining convex
polyhedral approximations to the workspace. For
these and other reasons, the maximally inscribed
rectangle has become a popular method in indus
try for prescribing the useful region of a robot's
workspace (1999).

The maximally inscribed rectangle problem is
well-known in computational geometry, and
arises naturally in applications where an internal
approximation to a polygon is desirable (e. g.,
laying out apparel and shoe pattern pieces with
minimal waste (Daniels et al., 1997). It also arises
in collision detection and other mobile robot
planning problems (Agarwal, 1996). For exam
ple, if the approximated inscribed rectangle to a
polygonal robot collides with other objects in the
environment, then it is clear that the original
polygon also collides with the same objects. Most
previous studies in the computational geometry
literature focus on convex polygons and
polyhedra, usually with respect to fixed orienta
tion and aspect ratio of the rectangle. If concave
polygons, variable orientations and aspect ratios
are considered, then the problem becomes
nonlinear and quite complicated.

In this paper we present an optimization-based
algorithm for determining the maximally
inscribed rectangle in a robot's workspace.
Simpler variations of this problem have been
addressed in the computational geometry litera
ture (Daniels et al., 1997; de Berg et al., 1997; 0'
Rouke, 1998), as well as the literature on mobile
robot path planning (Agarwal, 1996), multiple
robot manipulators (You and Jeong, 1998), con
vex programming and optimization (Vande
nberghe et al., 1998), and data mining (Hong et
al., 1997; Liu et al., 1997). However, previous
studies make several restrictive assumptions that
limit their usefulness for robot workspace
analysis, e. g., assuming fixed aspect ratios and/or
orientations for the rectangle, and assuming from

the outset that the robot's workspace is a convex
polygon. Nevertheless the problem itself is a very
general one with a wide range of application
beyond robot workspace analysis.

In this paper we frame the problem of
determining the maximally inscribed rectangle in
a robot's workspace as a multistage constrained
optimization problem with a convex objective
function. For the case of convex workspaces, in
which the boundary can be approximated by a
convex polygon, it can be shown that the problem
reduces to a convex programming problem sub
ject to multilinear constraints. For the general
nonconvex case we formulate the problem as a
constrained nonlinear optimization problem with
a special structure, to which standard numerical
optimization algorithms can be applied. Key to
the convergence properties of these numerical
algorithms is the choice of initial starting point.
In this paper, we propose a computational geo
metric algorithm for rapidly obtaining an ap
proximate solution that is suitable as a starting
point for the numerical optimization procedure.
Finally, we also refine the numerical algorithm of
Haug et al. (1996) for efficiently determining the
workspace boundary, by exploiting any
symmetries present in the robot workspace.

The paper is organized as follows. In Sec. 2 we
describe the modified cutting plane-based
algorithm for determining the workspace
boundary of a robot. Section 3 describes the
formulation of the maximally inscribed rectangle
problem as an optimization problem, together
with the computational geometric algorithm for
rapidly determining an approximate solution.
Analysis results for a class of industrial robots are
presented in Sec. 4. We conclude with a summary
and discussion of future research topics in Sec. 5.

2. Robot Workspace Generation

In this section we first present an algorithm for
determining the reachable workspace, which is
the set of all Cartesian positions that can be
reached by the end-effector. Our algorithm can be
viewed as a refined version of that developed by
Haug et al. (1996). To simplify the computation,
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Here a, denotes the midpoint of the joint limit

where / denotes the Cartesian position portion of

the forward kinematic map. By differentiating Eq.

(1) with respect to time, the transformation be

tween the end-effector Cartesian velocity and

joint velocity is derived as

In Eq. (4), ~~ represents the original Jacobian,

hil h d t ae d 'b hw let e secon erm -aJ escn es t e

reparametrization Jacobian, whose singularities

represent the joint limits. We now have a means

of completely characterizing the workspace

boundary as the singularities of a certain

Jacobian.

(8rax +er')/2, while b, is half the amplitude

(erax +erin )/ 2. Through the reparametrization,

the original Jacobian is changed into the follow

ing form:

2.2 Workspace boundary algorithm
The Cartesian workspace boundary for spatial

robots can be represented by a collection of two

dimensional surfaces. For open chains these

surfaces can be obtained by either rotating or

translating a certain cross-section, called the

cutting plane, about the first joint axis. A

straightforward way to demonstrate this is to

consider a 3 joint manipulator, e. g., the RRP one.

First, we set aside the first joint rotation, and

consider only motion in a vertical plane. The area

of reach (assimilated to the workspace cross-sec

tion) is obtained as the difference between two pie

wedges, given by the minimum and maximum

extent of the prismatic joint. Then, the border and

volume of the manipulator result from rotating

this area about the first joint axis by the distance

the centroid of the cross-section moves. In a

similar way, the workspace boundary and volume

of a 3R manipulator is given as the union of

points swept by the cross-section of a revolving

torus (due to the last two revolute joints) about

the axis of the first joint. The result can be

generalized to n-revolute manipulators and the

interested reader is referred to (Ceccarelli, 1996)

for details. Similar considerations apply to the

case when the first joint is prismatic, and the

rotation about first joint axis is simply replaced

(2)

(3)

p= a/ 8=](8)8
a8

we propose two modifications that reduce the

problem dimension: the introduction of the no

tion of cutting plane to symmetries in the robot

structure, and explicitly separating the variables

into joint angles and output coordinates in the

computation.

where J(8) is the m X n Jacobian matrix.

Configurations at which the Jacobian] (8) drops

rank are referred to as singularities of the robot.

At such configurations the robot end-effector

loses the ability to move along certain directions

in Cartesian space. For our purposes singularities

are meaningful because they constitute a part of

the workspace boundary together with joint

limits. Specifically, let S denote the set of all

singular configurations of the robot. Then

assuming no joint limits, the boundary of the

reachable workspace, denoted aWr, is given by

aWrCS={j(B):BEQ&Rank(J(B)) is not maximal}

where / is the forward kinematic map and Q is

the space of all allowable joint configurations.

In practice joint limit inequality constraints are

often imposed on joints of the form 8rin ~ 8 i s
8rax . By defining ~ new set of joint variables

through a reparametrization via a sinusoidal

function, the inequality constraints can be au

tomatically satisfied without explicitly specifying

the joint limits:

2.1 Preliminaries
For an n-D. O. F. robot, the relationship

between the end-effector Cartesian position P=
[PI"", Pm]ERm(m~3) and the joint space

variables 8=[81, "', 8n]ERn is defined by

P=/(8)
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Fig. 1 Block diagram of the workspace generation

procedure
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Fig. 2 Schematic of the workspace generation pro
cedure

by translation on the axis. Like this, depending

on the the type of the first joint, the cutting plane

can be chosen as follows:

• Revolute joint: Any plane that includes the

joint axis.

• Prismatic joint: Any plane normal to the

joint axis.

Our algorithm is based on Hang's algorithm

(1996)(see Appendix for a brief of the algorithm),

which suggests the use of the continuation method

in the joint and workspace region. At first we

separate the variables into joint angles and output

coordinates (given by the end-effector cartesian

positions). From these separated variables and

the cutting plane, we simplify the workspace gen

eration and enrich the physical interpretation by

directly relating to the geometric charateristcs of

the workspace boundary and to the robot's

manipulability index. A brief algorithm is as

follows (see also Fig.I and Fig.2):

(1) Determine the direction and number of the

cutting plane. The direction is given by the first

joint axis (as already specified above) and the

number by the desired accuracy of the workspace

outer boundary. The range of the cutting plane

(accounting for the first joint limits) can be de

termined by the inverse kinematics based on a

Newton-Rapson iteration.

8i = 8i - 1+J-I(PdeSiTed- Pi-I)

where i is the iteration number, and PdesiTed is the

desirable position.

(2) Find the initial boundary point using a

discrete movement on an arbitrary direction of a

ray within the cutting plane. If the inverse

kinematics solution about some position exists,

the position is inside the workspace. Otherwise

the point is outside the workspace. The discrete

movement along the ray is defined by

Pi=Pi-l+hc

where h is the step size, and c is the ray direction.

If the point is outside the workspace, the step size

h is halved and the process is repeated until the

criteria is met. The step size h is within a

prescribed solution tolerance.

(3) Find the normal vector to the boundary

surface using the Jacobian rank deficiency.

(4) Find the tangent vector at the boundary

point. First, we project the normal vector onto the

cutting plane and obtain the tangent vector by

rotating the projected normal vector 90 degrees

(since the normal vector is orthogonal to the

tangent vector for regular curves).

(5) Find the joint space searching direction

using the manipulability measure as defined in

Yoshikowa(1985). By Taylor's expansion, this
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direction is the joint space direction such that det

(jJT) is maintained to be zero:

det(jT")»= det(j]f)oo

+ adet(j]f) S+~ST (fdet(j]f) r
ee 2 (fe"

where Sis the joint space direction, eo is the joint

value of the present boundary point, and eis the

joint value of the next boundary point. Since at

singularities the manipulability index becomes

zero, the joint space searching direction results in

the null space of Jacobian and Hessian of det

(jJT) and it does not leave of the cutting plane.

(6) Find the next point using the joint space

direction that results in the same direction as the

tangent direction. The above process is repeated

until the closed workspace is generated for the

entire cutting plane. Then, rotate the cutting plane

and repeat the above steps.

(7) For determining internal holes, a

bifurcation point is traced. At a bifurcation there

exist two or more joint space search directions:

one corresponding to the boundary, the other

corresponding to internal singularities. If we want

to find only the outer boundary, the internal

directions can be excluded at bifurcation points.

3. Robot Workspace Analysis

This section examines the maximum inscribed

rectangle as one means of evaluating the

workspace quality. Our primary focus will be on

planar workspaces, in which case the rectangle

will be two-dimensional. This problem is of

practical significance for planar robots such as

the SCARA. Moreover, most industrial robots

have a symmetric structure which makes the

planar results meaningful in a workspace

analysis. In any event a careful understanding of

the planar case is essential to developing a more

complete analysis of three-dimensional

workspace, such as finding the maximally

inscribed polyhedron. In this section, we show

how to formulate the problem as a constrained

optimization problem, to which standard numeri

cal optimization algorithms can be applied to

obtain a solution. As is well known, the conver-

gence characteristics of any numerical

optimization algorithm is determined to a large

extent by the choice of initial starting point.. We

show how to rapidly obtain an approximate so

lution to the problem, which serves as a good

choice of starting point for the optimization.

3.1 Problem formulation
Following standard practice, in what follows

we assume as given a polygonal approximation to

a robot's workspace, and attempt to find the

largest inscribed rectangle inside the polygon with

variable orientation and aspect ratio. The prob

lem can be stated as the following optimization

problem:

Maximize Area(R(x»
Subject to R(x)";;P

where R is the rectangle, x is the rectangle

parameter, and P is the polygonal approximation

to a robot's workspace.

In the event that the polygon is convex, the

constraint R(x)";; P can be expressed as an inequa

lity of the following form:

AR(x);s.B

Here, R(x); (£=1, "',4) denotes the vertexes

of the rectangle, and A and B are coefficients of

the convex polygon P={xERn IAxs.B} with

the inequality holding component-wise. This

problem was formulated as a convex

programming problem subject to multilinear

constraints by Vandenberghe et al. (1998). Ob

serve that the requirement that the vertices of the

rectangle lie inside the polygon is assured by the

convexity condition.

For workspaces approximated by non-convex

polygons, the constraints are more complicated. A

visibility query (de Berg et aI., 1997) only shows

whether edges of the rectangle lie inside the

polygon. To formulate the optimization problem,

we must quantify how far the vertices and edges of

the rectangle lie inside the polygon. That is, we

seek a problem formulation of the form

Maximize Area(R(x»
Subject to dist(R(x);, P):5:.0 (5)

A(x):5:.0
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Fig. 3 Finding the intersection polygon

In Eq. (5), disf(R(x)i, P) is the distance be

tween the point R(X)i and the simple polygon P,
while A(x) denotes the area of the region that

extrudes from the polygon. Although the objec

tive function is simple, the constraint is a

nonlinear one that must in general be evaluated

numerically. In the next section we explain in

more detail the procedure for evaluating the

constraints.

3.2 Constraint evaluation

The first constraint of Eq. (5) corresponds to

the condition that every vertex of the rectangle

must lie inside the polygon. The polygon is

implemented as a boundary vertex list structure.

We define the distance between a vertex and the

polygon as follows:

disf(R(x)i, P)=

{
- min(dist (R(X);, each edge of P)) if R(x);Elnterior of P

min(dist(R(x);, each edge ofP)) if R(X)iEExterior of P

Determining whether a point is in the interior

or exterior of a polygon can be determined from

the winding number, and is a standard procedure

in computational geometry(O'Rouke, 1998). The

final distance is taken to be the minimum value

among the distances between each edge of the

polygon and the vertex .

The second constraint of Eq . (5) can be inter

preted as the area of the rectangle that lies outside

the interior of the polygon; clearly an outer area

of zero implies that the rectan gle lies completely

inside the polygon. The outer area can be

evaluated by a combination of an intersection

query (O'Rouke, 1998) and an interior query (i.

e., determining whether a point lies inside or

outs ide a polygon). To determine the area of the

outer polygon(P- R), we first find the intersecti

on polygon pn R as follows (see Fig . 3):

I. Calculate the number of intersection points

(n i) between the edges of the polygon and the

rectangle by an intersection query, the number of

the rectangle interior points (nr) (vertexes lying

inside the polygon) and the number of polygon

interior points (np) (vertexes lying inside the

rectangle) by an interior query.

2. Determine the first vertex P; of the intersect

ion polygon P nR and the search direction Vs as

follows:

• Case nr'*O: Pi=a rectangle interior point,

"Vs=the rectangle direction (see Figure 3);

• Case ni=O, np'*O: Pi=a polygon interior
point, "Vs=the polygon direction (see Figure 3);

• Case n-, np=O, ni=l=O:Pi=an intersection
point, "Vs=the direction determined by the interi

or query of the mid-point between the intersecti

on points on the same edge;

• Case nr, np, ni=O: the rectangle and the

polygon are disjoint.
3. Determine the next vertex of P nR; that is,

the next vertex of the search direction until an

intersection point is detected . If the intersection

point is met, the next vertex is the intersection

point and Vs is changed. Perform the above

operation until the closed intersection polygon is

created.

4. Check if the new intersection polygon is

separated by comparingfxr-l- nr+ np) with the

number of vertexes of the intersection polygon. If

the two numbers are not the same, perform the

same procedure for the other part.

3.3 The initial guess determination

In the previous section , we formulated the

maximally inscribed rectangle problem as a

nonlinear constrained optimization problem, for

which several local minima may exist. Also , as is

well known the convergence behavior of any

numerical optimization algorithm depends to a

great extent on the choice of the starting point. In

this section we present a method for rapidly

obtaining an approximate solution to the prob-
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lem, that can be used as a starting point for the

nonlinear optimization procedure of the original

problem. We achieve this by simplifying the orig

inal problem to the largest empty rectangle prob

lem as first proposed by Liu et al. (1997).

This approach applies the concept of the

maximum hyper rectangle (MHR). MHR refers to

any rectangle that contains no discrete workspace

boundary points within its interior, and has at

least one boundary point on each bounding edge.

The main idea of this algorithm is as follows.

Given 2-dimensional bounded space Sand n
points in S, we first start with one MHR, using

the maximal point of each dimension, which cov

ers the entire space S and ignoring the interior

points. Then each interior point is incrementally

___·.....JI~ .------,

Fig. 4 Illustration of the computational geometry
algorithm

•

•

•

•

inserted in the initial MHR. At each insertion, we

update the set of MHRs that have been created.

The update process is done as follows (see also

Fig. 4). When a new point is added, we first find

all existing MHRs that contain this point. These

rectangles are no longer MHRs, since they con

tain the point within their interiors. Using the

newly added point, a new lower and upper bound

for each dimension are formed to result in new

MHRs. If these new MHRs are greater than a

certain criteria, they are inserted into the list of

existing MHRs.

We use a simple example to illustrate the

algorithm (see Fig. 5). Suppose that the polygonal

workspace is changed into a discrete set of data

points. First, construct the bounded space S
(ABCD). Second, add the point (PI) inside S.
Through an update process, ABCD is deleted

from the MHR list, and new MHRs are generated

(ABFE, EFCD, AGHD, GBCH). Third, consider

the next point(R). Because MHR ABFE and

AGHD contain R, these are changed into new

MHRs. ABFE is separated into KBFM, AKME,

•
•

~EffiO
B F C

~ Construct the bounded space{S)A[]P2 0
P,

•
B C

~ Consider the first point

AOO :~:
B F C B C

~ ~ Consider the second point

Arr-ilD A~D ~~~

lL-JJ G~H Gt==:jH
B

J
FCB CB C

Fig. 5 Procedure of the MHR algorithm
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Fig. 6 Planar robot with redundant input
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Fig.8 H120 model
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Fig. 7 Workspace of planar robot with redundant
input

ABJI. and IJFE. But, because the right side of

AKME (ME) is not bounded anymore, AKME is

not an MHR. Hence only KBFM, ABJI, IJFE are

inserted into the list of existing MHRs. The same

process is applied to AGHD, and new 3 MHRs

are also generated. Repeating this process until all

the points of the workspace boundary are

accounted for, we arrive at the MHR of the

bounded space S, i. e. IJFE, which represents the

initial guess for the nonlinear problem. If more

workspace boundary points are considered the

approximation of the initial guess increases ac

cordingly.

4. Examples

4.1 A redundant planar open chain

In this section we evaluate the workspace of a

three d.o.f. planar open chain using the algorithm

of the previous section. The input-output

characteristics of the three-revolute joint chain

shown in Fig. 6 are the three link angles fA, fh., (}g,
and the x and y coordinates of the tip. The joint

[
1r 1r

value ranges are defined as -3~ fA :;;;2' -

1r 1r 1r 1rJ2~fh.~2' -4~(}g~2 . The lengths of the

links are 11= 4, 12= 2, and 13= 1. The joint

variables 8 are first reparameterized in terms of

the new variable A. That is, 81= ~ + ~; sin (AI),

etc., and the forward kinematics and velocity

relation are written accordingly. Since we deal

with a planar mechanism there is obviously no

need to apply any cutting planes. The specifics of

the analysis are shown in Table I, while the

pictorial view of the workspace is presented in
Fig.?

4.2 An industrial robot containing a closed
loop

In this section we consider the workspace of the

Hl20 industrial robot manufactured by Hyundai.

This robot contains a single closed loop in the

center of its structure (see Fig. 8), to allow the

actuators to be placed at the base and thereby

reduce the inertia of the robot while increasing its

payload. The mechanism contains both active and
passive joints.

We consider the generation of the workspace

with respect to the wrist center point. The

Cartesian positioning workspace of the H 120 is
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Table 1 Analysis conditions and results
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I Value Result

Initial A 0,0,0 Num of Vertex 98

Initial position(mm) 6588.9, 2161.7 Max X(mm) 6968.4

Searching direction(mm) 0, 1 Min X(mm) -3000.0

Initial boundary point(mm) 6588.9, 2363.5 Max Y(mm) 7000.0

Tangent vector(mm) -337.6,941.3 Min Y(mm) -6460.4

Joint space direction 1,0,0 Areatmrn") 61.605ge6

Fig.9 Workspace of Hl20 model

hown in Fig. 9. Table 2 lists the data on the

workspace of the H 120; the wrist point

coordinates at the home position are assumed to

be (in mm) (1535, 0, 2090). For the Hl20 the

cutting plane can be taken to be any plane

containing the z -axis of the fixed frame, or

equivalently the first joint axis. Note that the

robot workspace can be obtained by sweeping the

cross-section in any given cutting plane about the

first revolute joint axis. After performing this

sweeping operation, the workspace volume is

evaluated to be 4, 874, 740 mm".

We first obtain an approximate solution for a

given fixed orientation of the rectangle, by

discretizing the workspace boundary and

applying the computational geometric algorithm

of the previous section. The results are presented

in Fig. 10 and Table 3. The initial conditions of

the analysis are given by the x and y-range, as

presented in the first column of Table 3. The

overall computation time is approximately 7

seconds on a Pentium II 266M Hz PC, with the

algorithm implemented in C++.

The approximate solution for the largest empty

rectangle(x and y-range, displayed in the last

column of 3) is then used as the initial starting

point in the optimization procedure for arbitrary

orientations of the rectangle. We apply the BFGS

update algorithm using Cholesky factorization as

outlined in Gill et al. subject to the numerical

constraint Eq. (5). The optimized largest rectan

gle is shown in Fig. II and its details are
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Table 2 Specifics and workspace of H 120 model

Joint Screw Limits active Max Reach Result

I 0, 0, I, 0, 0, 0 5Jr 5Jr 0 Max X(mm) 2,524-6'6

2 0, I, 0, -840, 0, 200 5Jr 5Jr 0 Min X(mm) -2,185.8-12'12

3 0, I, 0, -840, 0, 200 Jr 11Jr 0 Max Y(mm) 2,524-6'18
4 0, 1,0, -840, 0, -300 ... X Min Y(mm) -2,524

5 0, 1,0, -1840, 0, -300 ... X Max Z(mm) 2,723.2

6 0, 1,0, -1840, 0, 200 '" X Min Z(mm) -259.4

Table 3 Empty rectangle in workspace of HI20

Analysis Condition Value Largest Rectangle Value

X-range(mm) [0, 2524J X-range(mm) [589,2180J

Z-range(mm) [-260 2730J Z-range(mm) [255,2170J

Nb. of Points 227 Nb. of Rectangles 1591

Criteriaunm") 2.5e6 Areatmm") 3,044,060

.,., "-...
/r"'-'-----.....,:..,

1'\
2.

0.5

-,

1.5

'.
\

2.5

2.

Fig. 10 Empty Rectangle in workspace of HI20

presented in Table 4. The area of the largest

inscribed rectangle with variable orientation is

larger than the initial rectangle of a fixed orienta

tion by more than 10%. The overall computation

time takes approximately 27 seconds for this

phase of the procedure.

5. Conclusions

In this paper we suggest a method for robot

workspace analysis in terms of the maximally

inscribed rectangle in the workspace. This ap

proach provides information about the size and

Fig. 11 Inscribed largest rectangle within HI20
workspace

homogeneity of the robot's workspace, and is

useful for applications ranging from optimal

work-table placement to the placement of

cooperating robots. We formulate the problem as

a constrained nonlinear optimization problem for

both Convex and concave workspace environ

ments. For the actual optimization procedure, we

construct the appropriate constraints and quantify

the distance and the outer area between the rec

tangle and the workspace. Additionally, because

the initial starting point is all-important in

determining the convergence properties of the
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Appendix

This condition is reduced to an analytical form by

noting that a matrix is row rank deficient iff the

columns of its transpose are linearly dependent, i.

The position and orientation of each body of a

mechanism is characterized by the generalized

coordinates q = [qJ, ... , qnq)TERn" subject to the

independent kinematic constraint equations of the

form:

(10)

( II)

l lP (U, z) ]
G(x)= ([JJ(u, z)~ =0

e~-I

Like this, the numerical algorithm for mapping

the boundaries of the manipulator workspace is

summarized as follows:

1. Find an initial point on the workspace

boundary starting from an assembled configura

tion of the manipulator. For this, a unit vector in

the output space is first selected and discrete

movements along a ray defined by the starting

configuration and the unit vector are performed.

The associated values of the intermediate

coordinates z that determine the steps along this

ray are determined by a numerical procedure

from the modified kinematic constraint equations.

The next sub step is to find a vector sthat satisfies

the conditions of Eqs. (8) and (9). This is accom

plished by a least square procedure while

checking on the numerical stability of the solu

tion. This completes the routine for finding the

desired starting point on the manipulator
boundary.

2. Map one-dimensional solution curves in the

manipulator boundary. The desired one

dimensional curve on the boundary is a solution

set of (10). If Gx(x) has full rank, a unit tangent

vector h(x)ERn is uniquely defined by:

Gx(x)h(x)=O

h(xlh(x)=l

Det[Gx(X)] >0
h(xl

of the following equations onto the zz-space:

As long as Gx has full row rank, a unique unit

tangent vector can be computed at each point

along the solution of (10). At bifurcation points,

Gx is row rank deficient and (12) fails to deter

mine a unique tangent. This issue is addressed in
the next step.

3. Find tangents to continuation curves at

bifurcation points. Tangents to two continuation

curves are obtained as solutions of a quadratic

equation in two variable, which finally yields a

pair of tangents. For more than two continuation

curves another method has to be applied.

(6)lP(q)=O
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where IP:Rn
, ~ R" is a smooth function. To

describe the accessible output set of a

manipulator, the generalized coordinates are first
partitioned into q=[uT, o". wT)T=[U T, ZT]T,

where u, V and ware the input, output and

intermediate coordinates respectively. Then, upon

changing accordingly the constraint equation, the

accessible output set A is:

A={uERn
" : lP(u, z)=O, for some z}(7)

and the boundary of the accessible output set is

given by:

aAC{uEA: Rank IPz{u, z)< m, for

some z with lP(u, z)=O} (8)

aAC{UEA:IP!(U, z)~=O, e~=I,

lP(u, z)=O} (9)

with ~ERm. In the enlarged space of x= CUT, z",
sT)TERn, the workspace boundary as given by

the above equation is the projection of solutions
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4. Find barriers to output normal to the

boundary. This step assists in identifying curves

that comprise the exterior boundary of the acces-

sible output set. It also helps in determining local

mobility restrictions along selected curves in the

interior of the accessible output.




